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In two and three dimensions, the relaxation time Bottzmann equation can be 
solved analytically for the distribution function for a system of two hard par- 
ticles subject to isothermal shear. The previous solutions of Morriss, and Ladd 
and Hoover are shown to be formally equivalent. The integral representation for 
the average of each of the elements of the pressure tensor in the steady state is 
obtained for both sllod and dolls tensor equations of motion. Rigorous 
equations are derived which relate the viscosity and the normal stress differences 
in these two methods. We obtain asymptotic expansions for each element of the 
pressure tensor for both small and large 7. For high shear rates, the viscosity is 
found to vanish a s  7 - 2  log y in both two and three dimensions. 

KEY WORDS: Boltzmann equation; nonequilibrium; viscosity; molecular 
dynamics. 

1. I N T R O D U C T I O N  

There are two general  approaches to the calculat ion of t ranspor t  coef- 
ficients. A t ranspor t  coefficient L, such as the shear viscosity is defined by a 
linear const i tut ive relat ion of the form J = LX where J is the ther- 
modynamic  flux and  X is the the rmodynamic  force. In  the shear viscosity 

example, J is the shear stress - P x ~  and  X is the strain rate ~. The first 
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approach to calculating L is to construct (either physically, or theoretically 
or computationally) a nonequilibrium steady state by applying a fixed 
strain rate 7 and then measuring or calculating the response p~y.(ll The 
shear viscosity is given by -P~y/7, in the limit as 7 ~ 0. 

The second approach to calculating the shear viscosity is to observe 
the autocorrelation function of the thermodynamic flux J, that is 
(J(0) J( t )) ,  in an equilibrium system. The Green-Kubo formulas state 
that the shear viscosity is related to the infinite time integral of this auto- 
correlation function. (2) Both of these methods are valid, except in the 
special cases (such as the Green-Kubo in two dimensions(3)), and the 
arguments for and against the two approaches are generally based on com- 
putational and statistical considerations. 

It is clear, however, that the only approach to the study of truly non- 
equilibrium systems is to observe directly a system under an applied exter- 
nal field. With this approach it is possible to consider an ensemble of 
equilibrium systems, then apply the same external field to each, and watch 
the approach of the ensemble to a steady state. In this way we can define a 
time-dependent ensemble average that is equal to the equilibrium average 
at t < 0 and becomes the steady state ensemble average as t --* 00. For all 
t > 0 this ensemble average is well defined, and describes the approach of 
macroscopic variables to their steady state values. 

The initial problem with the study of steady states is that the work 
done on the system by the applied field is converted into heat, which must 
be extracted by some thermostatting mechanism. The theoretical 
understanding of various thermostatting mechanisms, such as the Gaussian 
isokinetic equations of motion ~4'5) is well advanced. (6~ However, the ther- 
mostatting "force" is in general a many-body force and is not easily incor- 
porated in the usual kinetic theory approaches. (7~ For this reason recent 
investigations(8 11) have considered the dynamics of very small systems 
whose equations of motion contain both applied field terms and ther- 
mostatting terms. Such studies have proved very useful as the results of two 
particle shearing systems (8 9) for example, display large system effects such 
as shear thinning and normal stress differences. More importantly, it is 
possible to obtain analytic results for such systems using the relaxation 
time approximation to the Boltzmann equation. 

There are three current methods of simulating shear flow in molecular 
dynamics simulations; boundary driven, (12) dolls tensor, (13/ and the sllod 
algorithm. (14'~5) The boundary driven method uses Newtonian equations of 
motion and contains no explicit applied field terms. Both dolls tensor and 
the sllod algorithm contain explicit applied fields terms and can be ther- 
mostatted using Gaussian isokinetic equations. The equations of motion 
for the two methods are as follows: 
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dolls tensor 

ri = p i / m  + nxTYi 

lbi = F i -  n),7pxi- o~pi 
(1) 

sllod algorithm 

f i = Pi/m + n~yYi 
(2) 

Pi  "~ F i  - -  I ix])Pyi  - -  o~pi 

In beth cases the Gaussian multiplier a, given by 

O~ = F i "  Pi  - ? P x i P y i  p 2  
i 1 l i = l  

(3) 

is chosen so that the temperature T, defined by 

1 ~ p2 (4) kg T d ( N -  1 )/2 = ~m. 

is a constant of the motion. Here d is the dimensionality of the system, N is 
the number of particles, and kB is Boltzman's constant. The factor of N -  ! 
is used rather than N, to remove the irrelevant contribution to the tem- 
perature from the supposed motion of the center of mass of the system. The 
quantity of interest is the pressure tensor P, defined by 

P V =  ~ (pipr + r~Fi) (5) 
i 

In what follows we will restrict ourselves to the kinetic contributions to P, 
namely, pk which we define to be 

PkV= ~ pip~/m (6) 
i 

The boundary driven method is simply the incorporation of the linear 
velocity profile in the periodic boundary conditions and is clearly exact. It 
has been shown (14) that the sllod algorithm is also exact to all orders in the 
strain rate 7, and that dolls tensor to second order in ~ gives the correct 
values of Tr(P), Pxy, and Pz~, but incorrect values of Pxx and Pyy. In this 
work we show that for the relaxation time approximation to the 
Boltzmann equation, the kinetic contribution to the shear stress P~y in the 
dolls tensor method is identical to P~y in the sllod. Dolls tensor reverses 
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P~x and Pygy so that the kinetic contribution to the normal stress difference 
= (Pyy -  Pxx)/Y changes sign to all orders in the strain rate. 

Several recent investigations have considered the dynamics of a very 
small system of two hard particles subjected to a shearing force under 
isothermal conditions. Ladd and Hoover (8) supplemented a simulation 
study of the steady state for a Lorentz gas in two dimensions with a 
numerical solution of the Boltzmann equation. The form of the Boltzmann 
equation used in this study, they termed the relaxation-time Boltzmann 
equation, as the usual collision term was replaced by ( f 0 - f ) / z  where f0 is 
the local equilibrium distribution function and z is a relaxation time. This 
form of the Boltzmann equation is closely related to the Krook- 
Bhatnager-Gross equation. (17) The derivation of this equation ~18) suggests 
that its validity will be restricted to systems near equilibrium. However, an 
equally valid approach is merely to state this kinetic equation and note 
that for a constant r, it is consistent with the conservation equations of 
hydrodynamics. This is the approach that we shall adopt here, and the 
validity of the approximation will be assessed by direct comparison with 
computer simulations. The inherent weakness of this phenomenological 
equation is that the results depend on the value of z. Near equilibrium, at 
low density, it is possible to estimate ~ from the average collision time, but 
far from equilibrium this is no longer the case. 

A subsequent study by Morriss (9) obtained an analytic solution of the 
Boltzmann equation for both the time dependent and steady state cases in 
two dimensions. From the steady state solution in two dimensions the large 
shear rate behavior of the pressure tensor was calculated. In particular, the 
steady state shear stress was shown to approach zero in a nonexponential 
decay for large shear rates, in contrast to earlier expectationsJ 8) The 
similarity of the form of the solutions in two- and three-dimensions 
suggests that the same nonexponential decay may be found in the three- 
dimensional case as well. Hoover (~~ has considered a two particle system 
under isokinetic and isoenergetic color diffusion. Hoover and Kratky ('t) 
have also considered three particle heat conduction problems. The present 
paper examines the time dependent and steady state solutions of the 
Boltzmann equation within the relaxation time approximation for both two 
and three dimensions for the sllod algorithm and dolls tensor. From the 
analytic solutions for the distribution function which are presented, we 
obtain an integral representation for each of the elements of the pressure 
tensor. Using Mellin transform techniques we obtain the behavior of the 
pressure tensor in both the small 7r and large 7~ limits. It is found that the 
viscosity decays nonexponentially toward zero for large strain rates. 
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2. THE T W O - B O D Y  B O L T Z M A N N  GAS IN T W O - D I M E N S I O N S  

2.1. SIIod a lgor i thm 

Consider a system of two hard disks in periodic boundary conditions 
whose equations of motion are given by the two-dimensional analog of the 
sllod equations (that is equation (2)). Define p = Pl = -P2 = p(cos 0, sin 0). 
The isokinetic constraint ensures that p is a constant of the motion, and it 
can be shown that the equation of motion for 0 between collisions is 

O(t) = ~ sin ~ O(t) (7) 

thus the trajectory for 0 between collisions is given by 

cot O(t) = -7 ( t  - to) + cot O(to) (8) 

The two-dimensional relaxation time Boltzmann equation for the dis- 
tribution function is 

a f ,  a a 
~'t -t- ~-0 (0f) = (~---tf) collision s 

~- - ( f  - fo)/r (9) 

where fo is the equilibrium distribution function, f0 = (27r)- 2. This equation 
can be solved (9) to obtain both the steady state distribution function 

fss(o)=fo cosec20~ (cot  0 -  cot ~9 t 
7r fo do exp ~-~ / (10) 

and the time dependent distribution function 

f(O, t)= fo I (  1 +-(~+-~tot-O)2jl + c ~  ~ e_tl~ 

f'ds 1 + c o t 2 0  
+ J0 ")-" (1 e -'/~ ] (11)  -o)v 

where 0 in the time dependent solution is 0 at time t. 
The phase variable corresponding to the pressure tensor is 

[/ cos 2 0 cos 0 sin 0"] 
/~VPk(0) = 2 \cos  0 sin 0 sin 2 0 (12) / 
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so the average value of the pressure tensor at an arbitrary time is given by 

f~ 
/r 

<Pk(t)> = dOf(O, t) Pk(O) (13) 

In Reference 9 the analytic integral representations for each of the 
elements of the pressure tensor in the steady state (t ~ oo) were obtained. 
The expansion of the shear stress for small 7~ is 

-~V<P~y>ss = - ~ ( - )n (Tz/2)2n + 1(2 n + 1)! 
n = 0  

(14) 

which leads to the following small 7z expansion for the viscosity 

t//q0: - ~ (_)n (Tr/2)zn (2n+ 1)! 
n ~ 0  

3 2 ~ 315 = 1 - :  (Tr) + ( 7 v ) 4 - - ~  -- ('~T) 6 + .-. 
(15) 

It is easily seen that as the first coefficient is negative, the fluid is shear 
thinning. Clearly this expansion is asymptotic, however, it is interesting to 
compare the coefficient of the term of order (y•)2 with the same coefficient 
in eq. (10) of Ladd and Hoover. {8) In two dimensions the collision operator 
is anisotropic, so Ladd and Hoover use a first-order perturbation term 
rather than the relaxation time approximation. This gives the coefficient of 
(7~) 2 to be - 1  rather than -3/2. It might seem from this comparison that 
the relaxation time approximation is grossly in error at small values of 7z, 
but this does not appear to be the case. In the Table below we compare the 
values of q/~/o obtained from the integral representation (Eq. (16) of Ref. 9) 
with those of Ladd and Hoover (Table III of Ref. 8). 

~%" /~/?~ 0 (8) /~ /~0  (9) 

0.017 0.9996 0.9996 
0.177 0.9630 0.9587 
0.354 0.8837 0.8716 
0.884 0.6450 0.6023 
1.77 0.4069 0.3820 
3.54 0.2096 0.1931 

We find that the two different collisional approximations agree remarkably 
over a wide range of values of 7z. 



Shear Flow in the Two-Body Boltzmann Gas 1 13 

The small 7+ expansion of the normal stress difference in the steady 
state ~ = k k (Pyy- Pxx)/72, can also be obtained by expanding the integral 
representation (Eq. (18) in Ref. 9). This gives 

flV~p~ = +2/2 ~ ( - )"+ '(?+/2) 2n (2n + 2)t (16) 
t/=O 

The (7+) ~ oo form for both t//t/o and/3V~,~ have been obtained (9) and 
the results are 

q/qo = 4/(?z)2(ln(7 z) -- C -  In 2) 

flV~,~ = -2/72(1 - 7r/(yz ) + (2/(yz)) 2 in(y+)) 
(17) 

2.2.  D o l l s  T e n s o r  

Consider the same two disk system used previously, with in this 
case the dolls tensor equations of motion. If we define 
P = Pl = -P2 = p(sin 0, cos 0) then the equation of motion for 0 is 

O(t) =7 sin 20(t) (18) 

This is exactly the same equation of motion for 0 as that obtained for the 
sllod algorithm and leads to precisely the same Boltzmann equation. 
Clearly both the steady state and the time dependent distribution functions 
are the same as those obtained for sllod. However, as the definition of 0 is 
different in this case, the phase variable associated with the pressure tensor 
changes, so that 

( sin20 cos 0 sin 0) 
f l v p k ( O )  d ~  = 2 \cos 0 sin 0 cos 2 0 (19) 

From Eqs. (12) and (19), we see immediately that this implies the follow- 
ing relations between components of the pressure tensor obtained using the 
two methods 

p k  `)dolls ( " p k ) + . o d  (20) 
- - x y  / ~ \ x y  

pk ")dolls - -  ( p k  x~sllod (21) 
- - x x  / - -  x - - y y  / 

p k  x~Oolls__ ( p k  ")sllod (22) 
y y  / - -  \ - - x x  ,+ 

The shear viscosity obtained with either sllod or dolls is the same to all 
orders in the strain rate and the normal stress difference ~b~ changes sign. 
The magnitude of ~1 k is the same from each method. In this section we have 

822/44/1+2-8 



114 Morriss, isbister, and Hughes 

seen that the shear viscosity and the normal stress difference, for the 
relaxation time approximation in two dimensions, are analytic functions of 
the field. 

3. THE SLLOD ALGORITHM IN THREE-DIMENSIONS 

In this section we consider the same two particle system as that in 
Section 2, in three dimensions. We introduce the nonstandard spherical 
coordinates (p, 0, ~b) defined by 

Px -- P cos 0 

py = p sin 0 cos ~b (23) 

Pz = P sin 0 sin ~b 

(note that the roles of 0 and ~b are reversed in Ref. 8). This gives 

= - 7  cos 0 sin 0 cos ~b (24) 

Furthermore, this particular choice of the spherical coordinates has p and q~ 
as constants of the motion, so that we need only consider the equation of 
motion for 0 

O(t) = 7 cos ~b(t) sin 20(t) (25) 

Integrating this equation, the trajectory for 0 between collisions is 

cot O(t) = -7 ( t  - to) cos ~b + cot O(to) (26) 

The relaxation-time Boltzmann equation in three dimensions is 

( O s i n O f ) + ~ ( ~ f ) + ~ ( p f ) ~ -  - ( f  - fo)/r  (27) 
+ s]n O 

where fo = (4~) -1. From Eq. (25) for 0, Eq. (27) becomes 

Of F-V sin 2 0cos Of at ~b ~-0 + 3~ sin 0 cos 0 cos ~bf= ()Co - f ) / z  (28) 

3.1. Steady State Solution 

In the steady state f has no explicit time dependence, so Eq. (28) 
becomes 

df(O) ( c o s e c  2 0"~ 0 c o s e c  2 0 
dO + \ 3 c ~  ) =  cos~-----~f o (29) 
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After careful but straightforward analysis the steady state solution is found 
to be 

cosec3 0 ~0 /cot  0 - c o t  ~ )  -re 
f~(O,(~)=4~zcosfb3 ~ d~ksin~exp~ 7zcos~b if--~--<~b<~ 

fo ~ ) 3re -c~ 0 dOsinOexp( c~176 if ; < ~ b <  
4rcTr cos ~b \ ~z cos r "2 

(3o) 

In Eq. (30), the two domains of definition for ~b values are precisely those 
over which cos ~b is positive and negative, respectively. Ladd and Hoover (8/ 
have also obtained a steady state solution using operational techniques. In 
Appendix A we show that the two solutions are equivalent. 

3.2. The  T i m e - D e p e n d e n t  S o l u t i o n  

To understand the approach to the steady state detailed above, we 
require the time-dependent solution of Eq. (28). A simple replacement of 
~3f/Ot by the total derivative df/dt using 

df af oaf ,  ~ OJ" 

allows Eq. (28) to be transformed into a first-order ordinary differential 
equation. Inserting the equation of motion (25) for 0, Eq. (28) becomes 

-~ft + (3~ cos ~b sin 0 cos 0 + ~ x ) f =  r- if0 (32) 

which can be solved to give the time-dependent distribution function 

I (  1 +c~ )3/2 
f(O,(J,t)=fo 1 + (Tt cos ~b + cot 0) e e -'/~ 

f,  ds (. 1 +cot20  ,3/2 q 

+ s0 \l+( soosO+cot012) e-" J (33) 

where it should be stressed that the 0 appearing on the right-hand side of 
Eq. (33) is 0 = O(t). It can be shown that f(0, ~b, t) is normalized to unity at 
all times t, and reduces to the steady state expression given by Eq. (30) 
when the limiting form of Eq. (33) is considered as t -+ oo. If we consider a 
fixed large time T, then Eq. (33) can be written as 

lim f~176 0 ~0 dO sin ~ exp (co t0  - c o t  0 )  
f"(O'~)=r~oo yzcos~b ")cot l(cotO+vTcosqb) \ ~'CCOS~ 

# 

(34) 
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In the limit as T ~  0% it is clear that the lower limit of the integral is either 
0 or ~, depending upon whether 7 cos ~b is positive or negative, and we 
obtain the previous result (Eq. (30)). The similarity in the functional form 
of the time dependent and steady state distribution functions in two and 
three dimensions leads to similarities in the physical properties. In par- 
ticular, the fractional exponents in the three-dimensional distribution 
function do not lead to nonanalyticities in the shear viscosity, as we shall 
see in the next section. 

We now calculate the average of the kinetic part of the pressure tensor 
in the steady state. The small and large ~ expansions of the kinetic con- 
tributions to the shear stress and normal stress differences are then 
obtained. 

4. T H E  P R E S S U R E  T E N S O R  U N D E R  SLLOD D Y N A M I C S  

From the definition of our polar coordinates, Eq. (23), the phase 
variable for the kinetic part of the pressure is 

cos 2 0 cos 0 sin 0 cos ~b 

/~PkV= 2 cos 0 sin 0 cos ~b sin 2 0 cos 2 ~b 

cos 0 sin 0 sin ~b sin 2 0 cos ~b sin ~b 

cos 0 sin 0 sin ~b ] 

r sin 2 0 cos q~ sin ~b 

sin 2 0 sin 2 q~ 

(35) 

where we note that the definition of the temperature implies that ~p2/m -= 1. 
The steady state average of ( p k )  is given by 

= f] fo do sin 0 f(O, e (0, ~) (36) 

For planar Couette flow the xy component of pk determines the 
viscosity q and it can be shown from Eqs. (30), (35), and (36) that 

~ V ( P x y )  = - - -  dze -z  Kl(z)[1 - (1 + 72rZz2) ~/2] (37) 
7 o 

After tedious but straightforward algebra, it can be shown that the integral 
representations for the diagonal elements of the pressure tensor are 

- 2  I v dz ze-ZKl(z)[(1 +72z2z 2) 1/2] (38) ~V(Pxx  ) = 2  
z0 

~V(P~y> =(-~--~ d z z - ' e - ~ K , ( z ) [ 1  - ( 1  + 72~2z2) - ' /2] (39) 

~ V ( p 2 )  - 2 f ~  (TZ) 2 dz z - ' e  ZKl(z)[1 - (1 + yZz2z2) 1/2] (40) 
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It is easy to see that there is no response in either ( P ~ )  or (Pykz). Using 
the method outlined in Appendix B for (P~y) we obtain the following 
asymptotic expansions for the diagonal elements of the pressure tensor: (i) 
for yz -~ 0 

2 16 2 96 112430 /~v(eL) = 5 + 5 5  (727) -55  (])27)4 + _ _  (])27)6 

2 4 400 5 70560 

f lV(P~y) 2 12 2 80 11@30 ~ __ 3__~ (]),t.) _~_ ff_ff (]/,iS)4 (])27)6 

(41) 

fiV(P~z) 2 4 2 16 160 
- 3  35 (]?Z') -~ 7-ff (])27)4 - i ~  (~27) 6 

and, (ii) for yr -~ 

k 2 flV(P~,~) = 2 - - -  [ln(Tr) + 2 In 2 - C -  1] ])'c 

f iV( k 2 Pxy) -= - - -  [ln(Tz) - C -  1] 
727 

2 
fl V ( P~YY ) = ( ])z ) 

flV(p~z ) =--2 [ln(])Q+21n 2 -  C - 2 ]  
yz 

(42) 

where C is Euler's constant. 
The only nondiagonal element of the pressure tensor which responds 

in this shearing geometry is (P~y).  From ~/= - ( P ~ y ) / 7  and Eq. (b.6) of 
Appendix B it follows that the shear viscosity is 

~ 176400 
/~/~0 = 1 - - - -  (~27)2 _.~ (])Z)4 2 4 3 ~  (])27)6 "4- ' ' '  (43) 

in agreement with Ladd and Hoover's analysis. For large 7z, it can be 
shown that 

r//~/o_ 5 l n 0 , z ) 5 ( 1  + C ) ( ~ )  
(yz) 2 (Tz) 2 ~-0 (44) 
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It is appropriate to point out that the high shear rate behavior of the shear 
stress is functionally independent of dimension, with the only difference 
being in the coefficient of the (Tr) -I  term. Furthermore, the two-dimen- 
sional equivalent of (44) shows that the viscosity vanishes as ln(Tz)/(yz) 2 
which is consistent with the earlier conjecture that the viscosity (in two 
dimensions) vanishes at least as strongly as (?z) 3/2. 

5. THE DOLLS TENSOR METHOD IN THREE-D IMENSIONS 

The dolls tensor equations of motion differ from the sllod equations in 
the strain rate dependent term in the Pi equation. The essential ingredient 
in obtaining a solution in the three-dimensional sllod example, was to 
obtain equations of motion for 0 and ~b such that one of these variables was 
a constant of the motion. In order to do the same for dolls tensor 
equations of motion, we choose the following definitions of 0 and ~b 

Px = P sin 0 cos ~b 

py = p cos 0 (45) 

Pz = P sin 0 sin ~b 

This choice leads to ~ = - ~  sin 0 cos 0 cos ~b as before, Eq. (24) and 

0 = ~ sin 2 0 cos ~b (46) 

Substituting into the relaxation-time Boltzmann equation, we obtain the 
same partial differential equation as we did for sllod dynamics. Therefore 
the time dependent and steady state distribution functions are the same as 
those for sllod. Again the change in the definition of 0 and ~b means that the 
definitions of the elements of the pressure tensor change, and 

r i g i d  k d~ = 2 

sin 2 0 cos 2 ~b cos 0 sin 0 cos ~b sin 2 0 cos ~b sin ~b ] 

cos 0 sin 0 cos q~ cos 2 0 cos 0 sin 0 sin ~b (47) 

1 [sin 2 0 cos ~b sin q~ cos 0 sin 0 sin ~b sin 2 0 sin 2 ~b 

Comparing with the definitions for sllod dynamics we find that 

p k  x) dolls__ k )sllod 
- - x x ;  - -  ( P y y  

p k  3dolls__ ( p k  3stlod 
- - y y  / - -  . . - - x x  / 

pk 3aolts_ (pkz)~"od 
--xz / 

p k  " , ) d o l l s  ( p k  N/sllod 
- - y z  z - -  \ - - x z  i 

(48) 
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For all the other elements of the pressure tensor, sllod and dolls give iden- 
tical results. In particular the shear stress, and hence the shear viscosity, is 
the same to all orders in the strain rate. 

In three-dimensions there are two independent normal stress differen- 
ces and these can be defined as 

and 

~1 = ( P y y  - -  Pxx)/7 2 (49) 

~2 = (Pzz - Pyy >/~2 (50) 

Using the results above, it is straightforward to show that 

0k dolls = _l]/k sllod (51) 

which is the same as the two-dimensional result. The relation between the 
O2's for the two methods is 

~2 k dolls= ~p2 k sl,od + q)~ ~,,od (52) 

There are only a few simulation calculations in which the kinetic con- 
tributions to the pressure tensor have been reported. One particular 
calculation (Ref. 8, Table la) reported the kinetic contribution to the nor- 
mal stress differences ~ and ~,~, for a system of 32 soft spheres at a density 
p * =  Na3/x/2 V= 0.4, a temperature T* = ks T/e = 1 and a shear rate 7 = 1. 
Before performing actual numerical comparisons, it is worthwhile pointing 
out that the two body Boltzmann equation for hard core particles need not 
give the same values of O~ and 02 k as those from a 32 particle soft sphere 
simulation. However, we would expect to see similar qualitative trends. 

This simulation calculation reports the values of 01 k and ~p~ obtained 
from both dolls tensor and the sllod algorithm. The results are, for the 
sllod algorithm 

O~ s.od = - 0 . 0 3  
(53) 

I//2 k sllod = - - 0 . 0 1  

Using the relations obtained above, we can use these computer simulation 
sllod results to predict the dolls tensor results for the same system. This 
gives 

~tk dolls = 0 . 0 3  

(54) 
I/,/2 kd~  = --0.04 

which are precisely the results obtained in Reference 8 by direct simulation 
using dolls tensor. 
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6. C O M P A R I S O N  W I T H  S I M U L A T I O N S  

In the preceding sections of this paper we have introduced a kinetic 
equation and discussed its solution in detail. The remarks in the introduc- 
tion suggested that this relaxation-time approximation to the Boltzmann 
equation may only be useful near equilibrium. In order to test the validity 
of this equation away from equilibrium we carried out several simulations 
of 896 soft disks at a shear rate of ), -= 1 and a temperature of T* = 1. Two 
densities were considered, p = Na2/V= 0.5 and p = 0.9238. The second of 
these state points is the most studied soft disk state (3) near the freezing den- 
sity. The other density is much lower and closer to the region where a 
kinetic theory approach may be valid. As the comparison of the relaxation- 
time approach and simulation is dependent upon the choice of r we 
decided to select z so that the shear stresses agreed, and then base the inter- 
pretation on a direct comparison of the distribution functions for 0. In 
dimensionless units it is straightforward to show that 

(Pxy)  = P d(P 2) dO F(p 2, O) p2 cos 0 sin 0 (55) 

where F(p 2, O) is the normalized probability distribution function for p2 
and 0. In the two-body Boltzmann approach p2 is a constant of the motion 
because the temperature is constant, but in a computer simulation Zi  p2 is 
constant so that the individual p~ are unconstrained. The average shear 
stress is 

(Pxy) = P dO f(O) p2(O) cos 0 sin 0 (56) 

where 

~ dp 2 F(p 2, O) p2 
P2(O) - ~ dp 2 F(p 2, O) (57) 

is the 0 dependent expectation value of p2. In the two-body Boltzmann 
approach p2(O) is fixed and independent of 0, so it factors out of the 
integral in Eq. (56). 

In the simulations we have calculated k (Pxy) directly, as well as p2(O) 
and the distribution function f(0). The first conclusion of this study is that 
there is a strong correlation between p2 and 0 at both densities considered, 
p=0.5 and p=0.9238 (see Figs. 2 and 4). This means that in the 
simulation there are two distinct contributions to the shear stress. The first 
is that due to f (0)  alone, while the second is due to the correlation between 
p2 and 0. As the two-body Boltzmann approach ignores the correlation 



Shear Flow in the Two-Body Boltzmann Gas 121 

cp 

h--- 

oo3 r 

0 . 2 .  

0~ 

0o0 
0 

. /  

I I I 

1 .0  2 o0 3 o0 
e 

Fig. 1. The distribution function f(O) at a density of p = 0.5, T* = 1 and 7 = 1. The solid line 
is from the two-body Boltzmann equation and the dashed line is from the 896 particle soft 
disk simulation. 
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Fig. 2. The dependence of p2(0) on the angle 0, for a density of p = 0 . 5  from the simulation. 
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Fig. 3. The distribution function f(O) at a density of p = 0.9238. The solid line is the two- 
body Boltzmann equation and the dashed line is the simulation. 
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Fig. 4. The dependence of p2(0) on the angle 0, at a density of p =0.9238 from the 
simulation. 
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between p2 and 0, we fitted the relaxation time ~ by requiring that the shear 
stress obtained, be equal to that obtained from Eq. (56) with p2(0) replaced 
by its average value. That is, the two-body Boltzmann solution was 
required to give only the first contribution to k (Pxy) and not the second. 

The shear stress obtained directly at p = 0.5 was -0.147, which agrees 
exactly with that obtained using Eq. (56) and the simulated values of p2(0) 
and f(O). The shear stress obtained by ignoring the correlation between p: 
and 0 was -0.084, and choosing 3=0.3955 the two-body Boltzmann 
equation gives precisely this value. In Fig. 1 we compare the theoretical 
distribution function for z = 0.3955 with that obtained in the simulation. 
The agreement is good for 0 < 0 < n/2, but for n/2 < 0 < n systematic dif- 
ferences appear. It is clear that nearly half of the observed shear stress is 
due to the correlation between p2 and 0 and that this contribution will not 
appear in an iso-kinetic two-body approach. 

At the higher density of p = 0.9238, the simulated and theoretical dis- 
tribution functions (z = 0.15) agree even better than they do at p =0.5 (see 
Fig. 3). Here again, the contribution to the shear stress from the 0 depen- 
dence of p2 is large. Ignoring this 0 dependence gives -0.0726 for the 
kinetic shear stress, which is approximately half that obtained from the 
direct calculation ( ( P ~ y ) =  -0.1309). In Fig. 4 we present this 0 depen- 
dence of the magnitude of p2. 

The surprisingly good agreement between the distribution functions at 
such a density suggests that the relaxation-time Boltzmann equation is a 
good approximation to strongly nonequilibrium systems over a wide range 
of fluid states. 

7. C O N C L U S I O N S  

The behavior of the kinetic contributions to the pressure tensor have 
been obtained for two and three-dimensional fluids undergoing planar 
Couette flow using the relaxation-time approximation to the two-body 
Boltzmann equation. Two methods of driving this flow have been con- 
sidered; the sllod algorithm and the dolls tensor hamiltonian. The sllod 
algorithm has previously been proved to be exact to all orders in the strain 
rate. Here we obtain the shear stress and the normal stress differences for 
both methods in two and three dimensions. Although the dolls tensor 
method gives incorrect normal stress differences, we find these are simply 
related to those for the sllod algorithm, and these relations are useful in 
understanding the results of larger systems of soft disks. Both the methods 
considered give the same shear stress, and hence viscosity, to all orders in 
the strain rate. 
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It is well known that the dependence of the shear viscosity on the 
strain rate is nonanalytic at ? = 0 in both two and three dimensions. (19) The 
relaxation-time Boltzmann equation predicts that the shear viscosity is 
analytic at y = 0. This is clearly a weakness associated with the implicit lack 
of correlated collisions in the relaxation time approximation. The solution 
does display many of the features of real systems in that normal stress dif- 
ferences and shear thinning are observed. In fact it is straightforward to 
show that the derivative of the viscosity with respect to the strain rate is 
always negative, and hence the fluid never exhibits shear thickening. 

The strong dependence of p2 on 0 observed in the computer 
simulations is similar to the orientational dependence of the radial 
distribution function in a shearing system which has already been 
reported. (2~ If the nonequilibrium entropy is defined to be 
S(t) = - k  ~ d F f ( t ) I n  f ( t ) - S ( 0 ) ,  then the biasing of both the spatial and 
velocity distributions will lead to an decrease in the entropyJ 21~ We note 
that the entropy calculated in Fig. 1 of Ref. 9 is incorrect. The correct value 
of S(t) for 7 =0.1 and z = 16.2 is negative for t>  0 and approaches the 
value -0.288 as t ~ oo. 

Finally it is apparent that the relaxation-time Boltzmann equation is a 
good approximation for investigating nonequilibrium states over a wide 
range of fluid states. The major difficulty with its use is that there is as yet 
no easy and a priori method to determine the parameter r for systems far 
from equilibrium. In fact it is probable that for such systems the parameter 
T may not be constant and may depend on 0 and p2. 
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APPENDIX A. EQUIVALENCE OF THE LADD-HOOVER 
SOLUTION 

The same differential equation for the steady state case has been 
solved by Ladd and Hoover (8) using operational methods. Such 
operational techniques may be replaced with their equivalent operations in 
Fourier space over cot 0 by the following steps: Eq. (29) may be rewritten 
in real space as 

[ ~3 1 sin30 (a.1) 
1 - T r c o s ~ b ~  F(O)-  47r 
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where 
F(0)  = f ( 0 )  sin 3 0 

= (2n) -~ dq e i~ cot Op(q) (a.2) 
- - o o  

and F(q)  is the one-dimensional  Four ier  t ransform of F(0)  = G(cot  0) over  
x = cot 0 space. The subst i tut ion of F f rom (a.2) and  subsequent  solut ion 
for F(q)  by mult iplying the resulting equa t ion  by S~_~ dye -iqx leads to 

1 f ~  x 2) --3/2 
G(q) = 4~(1 - iqTz cos ~b) _ ~ dxe iqx(1 + (a.3) 

Equa t ion  (a.3) can be inverted to obta in  

f ( x ) = ( l  + x2)3/2 f ~176 dq eiqx f ~  dx,e-iq~'(l + x,2) 3/2 (a.4) 
87r 2 -oo (1 -- iqTv cos ~b) 

( 1 + x 2)3/2 f oo dqeiq x 
47~ 2 - 0 o  (1 - iqyz cos ~b) qKi(q) (a.5) 

where the definition for the modified Bessel function of the first order  K~(q) 
has been used in (a.4). In Reference 8 two forms for the steady state dis- 
t r ibut ion function are obtained,  Eqs. (16) and (17). However ,  bo th  of  these 
equat ions involve an infinite sum which does not  converge. In par t icular  
the second of these equat ions  requires that  qT* cos 0 < 1 for convergence,  
but then q is integrated f rom - o o  to oo. The  app roach  used in this work  
bypasses  these convergence problems.  

In this appendix  we show that  Eqs. (30) of  the present  paper  and 
Eq. (17) of  Ref. 8 are equivalent.  The  L a d d - H o o v e r  solut ion can be writ- 
ten via a slight r ea r rangement  of  equat ion  (a.4) of this pape r  as 

f l u  = (1 + x2) 3/2 _i foo dx'(1 + x '2) 3/2  

8g 2 c~ cos ~b _ oo 

x dqeiq(x-~')[q + i/c~ cos ~b] -1 (a.6) 
oo 

where x = cot 0, and e = yr = iv. 
Fo r  c~ cos ~b> 0 the integral over  q can be evaluated th rough  its 

associated con tour  integral in the q plane (~6) 

i (oo dqeiq(x-x') 2~ (~-~')/~oo~ 
if J = ~b e x < x '  

c o s  ~ . i ~ c o s  
q + - -  

C O S  

= 0  if x > x '  (a.7) 
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A similar treatment of the contour integral for c~ cos 06 < 0 leads to 

i foo dqeiq(x-x') 
~cos~b _~ i - 0  if x < x '  

q + - -  
COS q~ 

-2re  

COS 
_ _ e ( X - ~ ' ) /  . . . .  ~ if x >  x '  (a.8) 

The substitution of (a.7) into (a.6) leads to 

f L i ~ =  (1 -Jr- y2)3/2 fxV dx'(1 .q- x'2)-3/2e (x x')/c~coso 

4zccr cos ~b : cot 0 
(a.9) 

from which it follows in the change of variables x = cot 0, x ' =  cot 0', and 
use of 1 + cot 2 0 = cosec 2 0 that 

c o s e c  3 0 f~ Ore(COt o- cot 0,)/a cos r 
f l u  4rcc~ cos r dO' sin (a.lO) 

provided cos r > 0. 
For  cos ~b < 0 a similar analysis of Eqs. (a.6) and (a.8) leads to 

cosec 3 0 f2"~ 
fLi-i=4zc~ cos ~b dO' sin O'e (c~176 . . . .  ,~ (a . l l )  

Equations (a.10) and (a.11) combine to give Eq. (30) in the present 
paper with ~ = 7z. 

APPENDIX B. ASYMPTOTIC EXPANSIONS 

From Eq. (42) we define the integral Ixy(~) as 

IxyOX) = f o  d q K l ( q )  e - q [ 1  - (1 + ~2q2)-1/2] (b.1) 

The initial step in the evaluation of (b.1) for large and small e is the 
replacement of the [-1-(1+0r -1/2] term by its inverse Mellin 
transform. (16) Thus, using 

1 1 
(1 + x )  - 1/2 _ 1 - 2~i  c -  i~ 

1 < C < : O  

(b.2) 
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with X=0~2q 2, we can write (b.1) as 

1 ~C+ioo oo 
Ixy(O~)-- 27~i1~1/2) JC--i~ ds~-2SF(s) F(1-S)fo dqe-qq-2SKl(q) 

- - I < C < O  
(b.3) 

The integral over q in (b.3) is a Mellin transform (Ref. 16, p. 331, eq. 28) 
and can be evaluated 

fo~ dqe-qK~(q) q e, _ F(1/2)/"(2 - 2s) F( - -2s)  
21 - 2~F(3/2 -- 2s) (b.4) 

provided Re(s) < 0. 
The combination of Eqs. (b.3) and (b.4) along with the analytic con- 

tinuation of the F function into the region Re(s) < 0 in the s plane allows 
(b.1) to be written as 

Ixy(~)= 2rci c-lo~ 
- - I < C < 0  

ds (c~/2)-2"F(s) r(1/2- s) r (2 -  2s)r(-2s) (b.5) 
2F(3/2 -- 2s) 

Small Strain Rate Expansion 

Closing the contour in the left half plane (Re(s) < 0) leads to a power 
series representation for I~y(~) for small e. Elementary analysis of the 
residues of the simple poles of F(s) at s = - 1 ,  - 2 ,  --3, - 4  .... leads to 

cd 2 4 200 35,280 ixy(C~)=__f__~o: + c~6 ~8+ .. .  (b.6) 
i ~  2431 

From the definition k ~V(Pxy) = - (2 /c  0 Ixy(~) and (b.6) it can be seen that 
Eq. (47) follows immediately. 

Large Strain Rate Expansion 

For large c~, we evaluate the contribution to Ixy(C 0 from the double 
pole at the origin. It is simplest in this case to obtain the residue directly 
from the Laurent expansion of the integrand about s = 0. To this end we 
write 

(~/2)-2s= e x p [ - 2 s  ln(~/2)] 

= 1 - 2s ln(~/2) + 0(s 2) 
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and the Taylor series expansion of F(z) for z = 1/2 - s, 2 - 2s, 3/2 - 2s as 

F(z) = F ( a ) [  1 + ( z -  a) 0 ( a ) ]  + 0(z - a)  z 

where 0 is the digamma function. The integrand can then be expanded as 

2s 2 t- s 

from which the residue can be identified. Then, Ixy(~) is seen to be 

Ixy(e) = I n  ~ -  1 - C (b.7) 

with C being Euler's constant. Equation (53) follows from (b.7) and (42). 
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